Author:
Liu Ziwei,Zhuang Yanli,Dong Limin,Mu Hongxu,Tian Shuo,Wang Leiming,Huang Aoxiang
Abstract
CeO2/UiO-66-NH2 (marked as Ce/UN) composites were in-situ synthesized by a hydrothermal method. The properties, photocatalytic aspects, and degradation mechanism of Ce/UN were studied carefully. SEM results show that Ce/UN have a 3D flower-like structure, where octahedral UiO-66-NH2 nanoparticles are embedded in the two-dimensional sheet of CeO2. TEM results demonstrate that CeO2 and UiO-66-NH2 are bonded interfacially to constitute a hetero-junction construction. Data obtained by electrochemical impedance spectroscopy and fluorescence spectroscopy established that Ce/UN has less charge shift resistance and luminescence intensity than these of two pure substances. When the ratio of Ce/UN is 1:1, and the calcination temperature 400 °C is used, the degradation efficiency of RhB in photocatalysis by obtained Ce/UN is about 96%, which is much higher than in the case of CeO2 (4.5%) and UiO-66-NH2 (54%). The improved photocatalytic properties of Ce/UN may be due to the formation of hetero-junction, which is conducive for most photo-carriers and thus the interfacial charge shift efficiency is enhanced. By the free radical capture test, it can be inferred that the major active substances involved in the degradation related to photocatalysis is H+ and · O2−.
Funder
National Natural Science Foundation of China
State Key Laboratory of Advanced Welding and Joining
The Open Foundation Guangxi Key Laboratory of Optical and Electronic Materials and Devices
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献