Active and Reactive Power Collaborative Optimization for Active Distribution Networks Considering Bi-Directional V2G Behavior

Author:

Xu Gang,Zhang Bingxu,Yang Le,Wang Yi

Abstract

Due to their great potential for energy conservation and emission reduction, electric vehicles (EVs) have attracted the attention of governments around the world and become more popular. However, the high penetration rate of EVs has brought great challenges to the operation of the Active Distribution Network (ADN). On the other hand, EVs will be equipped with more intelligent chargers in the future, which supports the EVs’ high flexibility in both active and reactive power control. In this paper, a distributed optimization model of ADN is proposed by employing the collaborative active and reactive power control capability of EVs. Firstly, the preference of EV users is taken into account and the charging mode of EVs is divided into three categories: rated power charging, non-discharging, and flexible charging–discharging. Then, the reactive power compensation capacity of the plugged-in EV is deduced based on the circuit topology of the intelligent charger and the active–reactive power control model of the EV is established subsequently. Secondly, considering the operation constraints of ADN and the charging–discharging constraints of EVs over the operation planning horizon, the optimization objective of the model is proposed, which consists of two parts: “minimizing energy cost” and “improving voltage profile”. Finally, a distributed solution method is proposed based on the Alternating Direction Method of Multipliers (ADMM). The proposed model is implemented on a 33-bus ADN. The obtained results demonstrate that it is beneficial to achieve lower energy cost and increase the voltage profile of the ADN. In addition, the energy demand of EV batteries in their plugin intervals is met, and the demand preference of EV users is guaranteed.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3