Machine Learning and Statistical Shape Modelling Methodologies to Assess Vascular Morphology before and after Aortic Valve Replacement

Author:

Aljassam Yousef1,Sophocleous Froso1,Bruse Jan L.2ORCID,Schot Vico1,Caputo Massimo13,Biglino Giovanni13ORCID

Affiliation:

1. Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK

2. Fundación Vicomtech, Basque Research and Technology Alliance BRTA, Mikeletegi 57, 20009 Donostia-San Sebastián, Spain

3. Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, UK

Abstract

Introduction: Statistical shape modelling (SSM) is used to analyse morphology, discover qualitatively and quantitatively unique shape features within a population, and generate mean shapes and shape modes that show morphological variability. Hierarchical agglomerative clustering is a machine learning analysis used to identify subgroups within a given population in relation to shape features. We tested the application of both methods in the clinically relevant scenario of patients undergoing aortic valve repair (AVR). Every year, around 5000 patients undergo surgical AVR in the UK. Aims: Evaluate aortic morphology and identify subgroups amongst patients who had undergone AVR, including Ozaki, Ross, and valve-sparing procedures using SSM and unsupervised hierarchical clustering analysis. This methodological framework can evaluate both pre- and post-surgical variability across subgroups undergoing different surgeries. Methods: Pre- (n = 47) and post- (n = 35) operative three-dimensional (3D) aortic models were reconstructed from computed tomography (CT) and cardiac magnetic resonance (CMR) images. Computational analyses for SSM and hierarchical clustering were run separately for the two subgroups, assessing (a) ascending aorta only and (b) the whole aorta. This allows for exploring possible variations in morphological classification related to the input shape. Results: Most patients in the Ross procedure subgroup exhibited differences in aortic morphology from other subgroups, including an elongated ascending and wide aortic arch pre-operatively, and an elongated ascending aorta with a slightly enlarged sinus post-operatively. In hierarchical clustering, the Ross aortas also appeared to cluster together compared to the other surgical procedures, both pre-operatively and post-operatively. There were significant differences between clusters in terms of clustering distance in the pre-operative analyses (p = 0.003 for ascending aortas, p = 0.016 for whole aortas). There were no significant differences between the clusters in post-operative analyses (p = 0.47 for ascending, p = 0.19 for whole aorta). Conclusions: We demonstrated the feasibility of evaluating aortic morphology before and after different aortic valve surgeries using SSM and hierarchical clustering. This framework could be used to further explore shape features associated with surgical decision-making pre-operatively and, importantly, to identify subgroups whose morphology is associated with poorer clinical outcomes post-operatively. Statistical shape modelling (SSM) and unsupervised hierarchical clustering are two statistical methods that can be used to assess morphology, show morphological variations, with the latter being able to identify subgroups within a population. These methods have been applied to the population of aortic valve replacement (AVR) patients since there are different surgical procedures (traditional AVR, Ozaki, Ross, and valve-sparing). The aim is to evaluate aortic morphology and identify subgroups within this population before and after surgery. Computed tomography and cardiac magnetic resonance images were reconstructed into 3D models of the ascending aorta and whole aorta, which were then input into SSM and hierarchical clustering. The results show that the Ross aortic morphology is quite different from the other aortas. The clustering did not classify the aortas based on the surgical procedures; however, most of the Ross group did cluster together, indicating low variability within this surgical group.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3