Regional Trends of Biodiversity Indices in the Temperate Mesic United States: Testing for Influences of Anthropogenic Land Use on Stream Fish while Controlling for Natural Landscape Variables

Author:

Thornbrugh Darren1ORCID,Infante Dana2ORCID,Tsang Yinphan3ORCID

Affiliation:

1. Eastern Regional Office, USDA’s Forest Service, Milwaukee, WI 53202, USA

2. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA

3. Natural Resources and Environmental Management, University of Hawaii, Manoa, HI 96822, USA

Abstract

The biodiversity of stream fishes is critically threatened globally, and a major factor leading to the loss of biodiversity is anthropogenic land use in stream catchments, which act as stressors to stream fishes. Declines in the biodiversity of stream fish are often identified by a loss of species or fewer individuals comprising assemblages, but biological degradation can also occur with increases in non-native species and/or the spread of fish tolerant to anthropogenic land use, suggesting the importance of accounting for the distinctness of assemblages along with richness and diversity to best characterize the response of stream fish assemblages to anthropogenic landscape stressors. We summarized stream fish assemblages from 10,522 locations through multiple biodiversity indices and then quantified index responsiveness to natural landscape variables and anthropogenic land use in stream network catchments across five freshwater ecoregions in the temperate mesic portion of the United States. Indices included species richness, Shannon’s diversity, Pielou’s evenness, beta diversity, taxonomic diversity, and taxonomic distinctness. First, we tested for correlations among indices across freshwater ecoregions and found that while species richness and Shannon’s diversity were always highly correlated, taxonomic distinctiveness was not highly correlated with other biodiversity indices measured except taxonomic diversity. Then, we used multiple linear regression to predict biodiversity indices in each of the five freshwater ecoregions to identify significant landscape variables from natural landscape and anthropogenic land uses. Most indices were consistently predicted by catchment area, and many were predicted by elevation, except for beta diversity, emphasizing the importance of these natural landscape variables on biodiversity. In contrast, taxonomic distinctness was often predicted by the amount of urban land use in the catchment, but the direction of the relationship varied. The proportion of agriculture land use in the network catchment was a more consistent predictor of species richness, beta diversity, and Shannon’s diversity. Our analyses show that taxonomic distinctness in freshwater fishes characterize a unique element of biodiversity in relationships with anthropogenic land uses in a streams network catchment. Taxonomic distinctness may also be an effective metric for the bioassessment of stream fishes along with richness and diversity indices to help preserve biodiversity in regard to current and future anthropogenic land uses.

Funder

Michigan State University

Red Cedar Fly Fishers

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference95 articles.

1. Freshwater biodiversity: Importance, threats, status and conservation challenges;Dudgeon;Biol. Rev. Camb. Philos. Soc.,2006

2. Helfman, G.S. (2007). Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources, Island Press.

3. Conservation status of imperiled North American freshwater and diadromous fishes;Jelks;Fisheries,2008

4. Global threats to human water security and river biodiversity;McIntyre;Nature,2010

5. Extinction rates in North American freshwater fishes 1900–2010;Burkhead;BioScience,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3