Mercury Accumulation in a Stream Ecosystem: Linking Labile Mercury in Sediment Porewaters to Bioaccumulative Mercury in Trophic Webs

Author:

Xu XiaoyuORCID,Bryan Albert L.,Parks Jasmine R.ORCID,Gibson Kara N.

Abstract

Mercury (Hg) deposition and accumulation in the abiotic and biotic environments of a stream ecosystem were studied. This study aimed to link labile Hg in porewater to bioaccumulative Hg in biota. Sediment cores, porewaters, and biota were sampled from four sites along the Fourmile Branch (SC, USA) and measured for total Hg (THg) and methyl-Hg (MHg) concentrations. Water quality parameters were also measured at the sediment–water interface (SWI) to model the Hg speciation. In general, Hg concentrations in porewaters and bulk sediment were relatively high, and most of the sediment Hg was in the solid phase as non-labile species. Surface sediment presented higher Hg concentrations than the medium and bottom layers. Mercury methylation and MHg production in the sediment was primarily influenced by sulfate levels, since positive correlations were observed between sulfate and Hg in the porewaters. The majority of Hg species at the SWI were in non-labile form, and the dominant labile Hg species was complexed with dissolved organic carbon. MHg concentrations in the aquatic food web biomagnified with trophic levels (biofilm, invertebrates, and fish), increasing by 3.31 times per trophic level. Based on the derived data, a modified MHg magnification model was established to estimate the Hg bioaccumulation at any trophic level using Hg concentrations in the abiotic environment (i.e., porewater).

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3