Affiliation:
1. Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
Abstract
Dunnett’s procedure has been frequently used for multiple comparisons of group means of several treatments with a control, in drug development and other areas. However, in practice, researchers usually face missing observations when performing Dunnett’s procedure. This paper presents an improved Dunnett’s procedure that can construct unique ensemble confidence intervals for comparing group means of several treatments with a control, in the presence of missing observations, using a derived multivariate t distribution under the framework of Rubin’s rule. This procedure fills the current research gap that Rubin’s repeated-imputation inferences cannot adjust for multiplicity and, thereby, cannot give a unified confidence interval to control the family-wise error rate (FWER) when dealing with this problem. Simulation results show that the constructed pooled confidence intervals archive nominal joint coverage and the interval estimations preserve comparable precision to Rubin’s repeated-imputation inference as the missing rate increases. The proposed procedure with propensity-score imputation method is shown to produce more accurate interval estimations and control the FWER well.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Beijing Natural Science Foundation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)