Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem

Author:

Silva Geiza12,Leite André2,Ospina Raydonal23ORCID,Leiva Víctor4ORCID,Figueroa-Zúñiga Jorge5ORCID,Castro Cecilia6ORCID

Affiliation:

1. Centre of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil

2. Department of Statistics, CASTLab, Universidade Federal Pernambuco, Recife 50670-901, Brazil

3. Department of Statistics, Federal University of Bahia, Salvador 40170-110, Brazil

4. School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

5. Department of Statistics, Universidad de Concepción, Concepción 4070386, Chile

6. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computational time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a comprehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios.

Funder

National Council for Scientific and Technological Development

National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science and Technology, Knowledge, and Innovation

CMAT - Research Centre of Mathematics of University of Minho

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Gomez, J.F., Panadero, J., Tordecilla, R.D., Castaneda, J., and Juan, A.A. (2022). A multi-start biased-randomized algorithm for the capacitated dispersion problem. Mathematics, 10.

2. Glover, F., Hersh, G., and McMillan, C. (1977). Selecting Subsets of Maximum Diversity, University of Colorado at Boulder. Technical Report.

3. Analyzing and modeling the maximum diversity problem by zero-one programming;Kuo;Decis. Sci.,1993

4. An empirical comparison of heuristic methods for creating maximally diverse group;Weitz;J. Oper. Res. Soc.,1998

5. Dhir, K., Glover, F., and Kuo, C.C. (1994, January 17–19). Optimizing Diversity for Engineering Management. Proceedings of the IEEE International Engineering Management Conference, Dayton North, OH, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biased random-key genetic algorithms: A review;European Journal of Operational Research;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3