Sol-Gel Derived Gelatin–Bioactive Glass Nanocomposite Biomaterials Incorporating Calcium Chloride and Calcium Ethoxide

Author:

Arambula-Maldonado Rebeca1ORCID,Mequanint Kibret12ORCID

Affiliation:

1. School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada

2. Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada

Abstract

Calcium-containing organic–inorganic nanocomposites play an essential role in developing bioactive bone biomaterials. Ideally, bone substitute materials should mimic the organic–inorganic composition of bone. In this study, the roles of calcium chloride (CaCl2) and calcium ethoxide (Ca(OEt)2) were evaluated for the development of sol-gel-derived organic–inorganic biomaterials composed of gelatin, bioactive glass (BG) and multiwall carbon nanotubes (MWCNTs) to create nanocomposites that mimic the elemental composition of bone. Nanocomposites composed of either CaCl2 or Ca(OEt)2 were chemically different but presented uniform elemental distribution. The role of calcium sources in the matrix of the nanocomposites played a major role in the swelling and degradation properties of biomaterials as a function of time, as well as the resulting porous properties of the nanocomposites. Regardless of the calcium source type, biomineralization in simulated body fluid and favorable cell attachment were promoted on the nanocomposites. 10T1/2 cell viability studies using standard media (DMEM with 5% FBS) and conditioned media showed that Ca(OEt)2-based nanocomposites seemed more favorable biomaterials. Collectively, our study demonstrated that CaCl2 and Ca(OEt)2 could be used to prepare sol-gel-derived gelatin–BG–MWCNT nanocomposites, which have the potential to function as bone biomaterials.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3