Highly Electroconductive Metal-Polymer Hybrid Foams Based on Silver Nanowires: Manufacturing and Characterization

Author:

Linul Petrică1,Bănică Radu2,Grad Oana3,Linul Emanoil4ORCID,Vaszilcsin Nicolae1

Affiliation:

1. Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei 2, 300 006 Timisoara, Romania

2. National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu Street, No. 144, 300 569 Timisoara, Romania

3. Research Institute for Renewable Energy, Politehnica University Timisoara, 138 Gavril Musicescu, 300 501 Timisoara, Romania

4. Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania

Abstract

Due to their electroconductive properties, flexible open-cell polyurethane foam/silver nanowire (PUF/AgNW) structures can provide an alternative for the construction of cheap pressure transducers with limited lifetimes or used as filter media for air conditioning units, presenting bactericidal and antifungal properties. In this paper, highly electroconductive metal-polymer hybrid foams (MPHFs) based on AgNWs were manufactured and characterized. The electrical resistance of MPHFs with various degrees of AgNW coating was measured during repeated compression. For low degrees of AgNW coating, the decrease in electrical resistance during compression occurs in steps and is not reproducible with repeated compression cycles due to the reduced number of electroconductive zones involved in obtaining electrical conductivity. For high AgNW coating degrees, the decrease in resistance is quasi-linear and reproducible after the first compression cycle. However, after compression, cracks appear in the foam cell structure, which increases the electrical resistance and decreases the mechanical strength. It can be considered that PUFs coated with AgNWs have a compression memory effect and can be used as cheap solutions in industrial processes in which high precision is not required, such as exceeding a maximum admissible load or as ohmic seals for product security.

Funder

Ministry of Research, Innovation and Digitization, CCCDI-UEFISCDI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3