The Influence of TiO2–Lignin Hybrid Fillers in Low-Density Polyethylene Composites on Photocatalytic Performance and UV-Barrier Properties

Author:

Jędrzejczak Patryk12ORCID,Cegłowski Michał3ORCID,Bula Karol4ORCID,Klapiszewski Łukasz1ORCID

Affiliation:

1. Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, PL-60965 Poznan, Poland

2. Faculty of Civil and Transport Engineering, Institute of Building Engineering, Poznan University of Technology, PL-60965 Poznan, Poland

3. Faculty of Chemistry, Adam Mickiewicz University, PL-61614 Poznan, Poland

4. Faculty of Mechanical Engineering, Institute of Material Technology, Poznan University of Technology, PL-60965 Poznan, Poland

Abstract

The main objective of this study was to discover new packaging materials that could integrate one of the most expected properties, such as UV protection, with a self-cleaning ability defined as photocatalytic performance. Accordingly, new hybrid additives were used to transform LDPE films into materials with complex performance properties. In this study, titanium dioxide–lignin (TL) hybrid systems with a weight ratio of inorganic to organic precursors of 5-1, 1-1, and 1-5 were prepared using a mechanical method. The obtained materials and pristine components were characterized using measurement techniques and research methods, such as Fourier-transform infrared spectroscopy (FTIR), thermal stability analysis (TGA/DTG), measurement of the electrokinetic potential as a function of pH, scanning electron microscopy (SEM), and particle size distribution measurement. It was found that hydrogen bonds were formed between the organic and inorganic components, based on which the obtained systems were classified as class I hybrid materials. In the next step, inorganic–organic hybrid systems and pristine components were used as fillers for a low-density polyethylene (LDPE) composite, 5 and 10% by weight, in order to determine their impact on parameters such as tensile elongation at break. Polymer composites containing titanium dioxide in their matrix were then subjected to a test of photocatalytic properties, based on which it was found that all materials with TiO2 in their structure exhibit photocatalytic properties, whereby the best results were obtained for samples containing the TiO2–lignin hybrid system (1-1). The mechanical tests showed that the thin sheet films had a strong anisotropy due to chill-roll extrusion, ranging from 1.98 to 3.32. UV–Vis spectroscopy revealed four times higher light absorption for composites in which lignin was present than for pure LDPE, in the 250–450 nm range. On the other hand, the temperature at 5% and 30% weight loss revealed by TGA testing increased the highest performance for LDPE/TiO2 materials (by 20.4 °C and 8.7 °C, respectively).

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3