A Study on the Properties of Composite Modified Mortar with Styrene–Butadiene Rubber Latex and Silica Fume

Author:

Yan Renwei1,Wang Laifa2,Ni Yongjun1,Zhang Shuowen3,He Zhenqing3,Guan Bowen3

Affiliation:

1. Qinghai Guoluo Highway Engineering Construction Co., Ltd., Xining 810021, China

2. Qinghai Provincial Traffic Control Construction Engineering Group Co., Ltd., Xining 810001, China

3. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

Abstract

To solve the problem of the poor abrasion resistance of concrete pavement surface mortar, this study substituted cement with equal amounts of styrene–butadiene rubber (SBR) latex and silica fume (SF) to investigate the effects of organic/inorganic material composite modification on the fluidity, drying shrinkage, mechanical properties, and abrasion resistance of cement mortar. Also in this study, the microstructure, product, and pore structure characteristics of the composite modified cement mortar were investigated using scanning electron microscope (SEM), X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and the Brunauer–Emmett–Teller (BET) method. This research found that the sole substitution of SF negatively impacted the mortar’s fluidity and drying shrinkage yet enhanced its mechanical strength and abrasion resistance; the incorporation of SBR latex improved fluidity, reduced shrinkage, and increased flexural strength but adversely affected the compressive strength of the mortar. Additionally, the enhancement of the mortar’s abrasion resistance with SBR latex was significantly greater than that with SF. When SBR latex and SF were used together as substitutes, the latex struggled to offset the negative impact of SF on mortar fluidity but effectively reduced shrinkage; SF compensated for the detrimental effect of the latex on compressive strength. Moreover, the primary role in enhancing the mortar’s abrasion resistance was played by the latex. Microscopic tests showed that SBR latex and SF could increase the content of calcium silicate hydrate (C-S-H) gel, inhibit the formation of ettringite (AFt) and reduce carbonation, refine the pore size of cement mortar, and effectively improve the microstructure of mortar.

Funder

Key R&D and the transformation plan of Qinghai Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3