Synthesis and Oxidative Degradation of Leucine-Based Poly(diacylhydrazine)

Author:

Wongwailikhit Kanda1,Suwannakeeree Ratha1,Kihara Nobuhiro2

Affiliation:

1. Department of Chemistry, Faculty of Science, Rangsit University, Phaholyothin Road, Lak-Hok, Pathum Thani 12000, Thailand

2. Department of Science, Faculty of Science, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Abstract

Diacylhydrazine is thermally and chemically stable, and it remains inert to oxygen even at high temperatures. However, it is rapidly oxidized by sodium hypochlorite, leading to its decomposition into carboxylic acid and nitrogen gas. In the synthesis of a novel poly(diacylhydrazine) as an oxidatively degradable polymer, L-leucine methyl ester is acylated by terephthaloyl chloride. Subsequent hydrazination yields a bishydrazide monomer. The oxidative coupling polymerization of this monomer produces poly(diacylhydrazine). The molecular structures of the products are confirmed by an 1H NMR analysis. A polymodal molecular weight distribution and a large polydispersity index are observed by GPC in all cases. A 10% weight loss temperature is noted at 286 °C in air by TGA. The obtained polymer is not oxidized by oxygen. No glass transition is observed below the decomposition temperature. Upon the treatment of the poly(diacylhydrazine) with sodium hypochlorite solution, decomposition occurs rapidly, resulting in monomeric carboxylic acid and nitrogen gas. The L-leucine-based poly(diacylhydrazine) serves as a novel on-demand degradable polymer with high levels of thermal and chemical stability during usage.

Funder

JSPS KAKENHI

Institute of Research, Rangsit University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3