A Review on Barrier Properties of Cellulose/Clay Nanocomposite Polymers for Packaging Applications

Author:

Jali Sandile1,Mohan Turup Pandurangan1ORCID,Mwangi Festus Maina12,Kanny Krishnan1

Affiliation:

1. Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa

2. Department of Mechanical Engineering, Durban University of Technology, Durban 4000, South Africa

Abstract

Packaging materials are used to protect consumer goods, such as food, drinks, cosmetics, healthcare items, and more, from harmful gases and physical and chemical damage during storage, distribution, and handling. Synthetic plastics are commonly used because they exhibit sufficient characteristics for packaging requirements, but their end lives result in environmental pollution, the depletion of landfill space, rising sea pollution, and more. These exist because of their poor biodegradability, limited recyclability, etc. There has been an increasing demand for replacing these polymers with bio-based biodegradable materials for a sustainable environment. Cellulosic nanomaterials have been proposed as a potential substitute in the preparation of packaging films. Nevertheless, their application is limited due to their poor properties, such as their barrier, thermal, and mechanical properties, to name a few. The barrier properties of materials play a pivotal role in extending and determining the shelf lives of packaged foods. Nanofillers have been used to enhance the barrier properties. This article reviews the literature on the barrier properties of cellulose/clay nanocomposite polymers. Cellulose extraction stages such as pretreatment, bleaching, and nanoparticle isolation are outlined, followed by cellulose modification methods. Finally, a brief discussion on nanofillers is provided, followed by an extensive literature review on the barrier properties of cellulose/clay nanocomposite polymers. Although similar reviews have been presented, the use of modification processes applied to cellulose, clay, and final nanocomposites to enhance the barrier properties has not been reviewed. Therefore, this article focuses on this scope.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3