Nickel-Catalyzed Ethylene Copolymerization with Vinylalkoxysilanes: A Computational Study

Author:

Song Zhihui1,Gao Rong1ORCID,Wu Changjiang2,Gou Qingqiang1,Zheng Gang1,Liu Junjie3,Yang Shifang3,Feng Huasheng4ORCID

Affiliation:

1. Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

2. SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

3. Department of Ethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

4. Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

Abstract

Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene copolymerization with various polar monomers, the α-diimine nickel catalysts have generally exhibited a much worse performance in these copolymerizations compared to their palladium counterparts. Recently, Brookhart et al. reported a notable exception, demonstrating that α-diimine nickel catalysts could catalyze the ethylene copolymerization with some vinylalkoxysilanes effectively, producing functionalized polyethylene incorporating trialkoxysilane (-Si(OR)3) groups. This breakthrough is significant since Pd-catalyzed copolymerizations are commercially less usable due to the high cost of palladium. Thus, the utilization of Ni, given its abundance in raw materials and cost-effectiveness, is a landmark in ethylene/polar vinyl monomer copolymerization. Inspired by these findings, we used density functional theory (DFT) calculations to investigate the mechanistic study of ethylene copolymerization with vinyltrimethoxysilane (VTMoS) catalyzed by Brookhart-type nickel catalysts, aiming to elucidate the molecular-level understanding of this unique reaction. Initially, the nickel complexes and cationic active species were optimized through DFT calculations. Subsequently, we explored the mechanisms including the chain initiation, chain propagation, and chain termination of ethylene homopolymerization and copolymerization catalyzed by Brookhart-type complexes. Finally, we conducted an energetic analysis of both the in-chain and chain-end of silane enchainment. It was found that chain initiation is the dominant step in the ethylene homopolymerization catalyzed by the α-diimine Ni complex. The 1,2- and 2,1-insertion of vinylalkoxysilane exhibit similar barriers, explaining the fact that both five-membered and four-membered chelates were identified experimentally. After the VTMoS insertion, the barriers of ethylene reinsertion become higher, indicating that this step is the rate-determining step, which could be attributed to the steric hindrance between the incoming ethylene and the bulky silane substrate. We have also reported the energetic analysis of the distribution of polar substrates. The dominant pathway of chain-end -Si(OR)3 incorporation is suggested as chain-walking → ring-opening → ethylene insertion, and the preference of chain-end -Si(OR)3 incorporation is primarily attributed to the steric repulsion between the pre-inserted silane group and the incoming ethylene molecule, reducing the likelihood of in-chain incorporation.

Publisher

MDPI AG

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3