Colloidal and Biological Characterization of Dual Drug-Loaded Smart Micellar Systems

Author:

Herman Hildegard1ORCID,Rata Delia2ORCID,Cadinoiu Anca2ORCID,Atanase Leonard23ORCID,Hermenean Anca1ORCID

Affiliation:

1. “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University, Rebreanu Street, No. 86, 310414 Arad, Romania

2. Faculty of Medicine, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania

3. Academy of Romanian Scientists, 050045 Bucharest, Romania

Abstract

Smart polymeric micelles (PMs) are of great interest in drug delivery owing to their low critical micellar concentration and sizes. In the present study, two different pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) copolymer samples were used for the encapsulation of paclitaxel (PTX), ursolic acid (UA), and dual loading of PTX and UA. Based on the molecular features of copolymers, spherical PMs with sizes of around 35 nm and 140 nm were obtained by dialysis for P2VP55-b-PEO284 and P2VP274-b-PEO1406 samples, respectively. The micellar sizes increased after loading of both drugs. Moreover, drug encapsulation and loading efficiencies varied from 53 to 94% and from 3.2 to 18.7% as a function of the copolymer/drug ratio, molar mass of copolymer sample, and drug type. By FT-IR spectroscopy, it was possible to demonstrate the drug loading and the presence of some interactions between the polymer matrix and loaded drugs. In vitro viability was studied on 4T1 mammary carcinoma mouse cells as a function of time and concentration of drug-loaded PMs. UA-PMs and free PMs alone were not effective in inhibiting the tumor cell growth whereas a viability of 40% was determined for cells treated with both PTX- and PTX/UA-loaded PMs. A synergic effect was noticed for PTX/UA-loaded PMs.

Funder

Romanian Ministry of Education and Research, CNCS—UEFISCDI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3