Poly-ε-Caprolactone 3D-Printed Porous Scaffold in a Femoral Condyle Defect Model Induces Early Osteo-Regeneration

Author:

De Mori Arianna1,Karali Aikaterina2,Daskalakis Evangelos3ORCID,Hing Richard4,Da Silva Bartolo Paulo Jorge3ORCID,Cooper Glen3ORCID,Blunn Gordon1ORCID

Affiliation:

1. School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK

2. Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

3. School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK

4. School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 2HB, UK

Abstract

Large bone reconstruction following trauma poses significant challenges for reconstructive surgeons, leading to a healthcare burden for health systems, long-term pain for patients, and complex disorders such as infections that are difficult to resolve. The use of bone substitutes is suboptimal for substantial bone loss, as they induce localized atrophy and are generally weak, and unable to support load. A combination of strong polycaprolactone (PCL)-based scaffolds, with an average channel size of 330 µm, enriched with 20% w/w of hydroxyapatite (HA), β-tricalcium phosphate (TCP), or Bioglass 45S5 (Bioglass), has been developed and tested for bone regeneration in a critical-size ovine femoral condyle defect model. After 6 weeks, tissue ingrowth was analyzed using X-ray computed tomography (XCT), Backscattered Electron Microscopy (BSE), and histomorphometry. At this point, all materials promoted new bone formation. Histological analysis showed no statistical difference among the different biomaterials (p > 0.05), but PCL-Bioglass scaffolds enhanced bone formation in the center of the scaffold more than the other types of materials. These materials show potential to promote bone regeneration in critical-sized defects on load-bearing sites.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3