Rheology of Crumb Rubber-Modified Warm Mix Asphalt (WMA)

Author:

Al-Khateeb Ghazi G.12ORCID,Sukkari Alaa1,Ezzat Helal34ORCID,Nasr Eyad1,Zeiada Waleed15ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

2. Department of Civil Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

3. Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

4. Civil Engineering Department, Faculty of Engineering, Delta Higher Institute for Engineering and Technology, Mansoura 35681, Egypt

5. Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

Abstract

This study explores the impact of adding waste vehicular crumb rubber to the commercially available warm mix additives Sasobit® and Zycotherm® on modified asphalt binders’ physical and rheological properties. Various concentrations of crumb rubber (0%, 10%, 15%, and 20%) were introduced to asphalt binder samples with 2% and 4% Sasobit and 1.5% and 3% Zycotherm. The investigation employed conventional tests (penetration and softening point) and advanced mechanical characterization tests, including Superpave rotational viscosity (RV), Dynamic Shear Rheometer (DSR), DSR multi-stress creep recovery (MSCR), DSR linear amplitude sweep (LAS), and Bending Beam Rheometer (BBR). Traditional tests measured the asphalt consistency, while workability was assessed through the RV test. The results showed that the Zycotherm binders experienced a more significant penetration reduction than the Sasobit binders. Additionally, an increased crumb rubber content consistently elevated the softening point and rotational viscosity, enhancing the complex shear modulus (G*) values. Rubberized binders exhibited an improved rutting performance and low-temperature PG grades. Increasing the crumb rubber content enhanced fatigue life, with Z1.5CR20 and S2CR20 demonstrating the longest fatigue lives among the Zycotherm and Sasobit binders, respectively. Overall, Z1.5CR20 is recommended for colder climates, while S2CR20 is suitable for hot-climate applications based on extensive analysis.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3