Workpiece Pose Optimization for Milling with Flexible-Joint Robots to Improve Quasi-Static Performance

Author:

Qin Haojie,Li Yuwen,Xiong Xiong

Abstract

Although industrial robots are widely used in production automation, their applications in machining have been limited because of the structural vibrations induced by periodic cutting forces. Since the dynamic characteristics of an industrial robot depends on its configuration, the responses of the robot structure to the cutting forces are affected by how the workpiece is placed within the workspace of the robot. This paper presents a method for workpiece pose optimization for a robotic milling system to improve the quasi-static performance during machining. Since the milling forces are time-varying due to the characteristics of the multi-tooth and discontinuity of milling, these forces can excite vibrations inside the robot structure. To address this issue, a structural dynamics model is established for industrial robots, considering their joint flexibility, and a milling force formulation is incorporated into the robot dynamics model to investigate the forced vibrations of the flexible joints. Then, the quasi-static performance of the robotic machining system is evaluated by the vibration-induced offset of the cutter tool that is mounted on the end-effector. Finally, an optimization approach is given for the workpiece pose to minimize the cutter tool offset under the periodic milling force. A numerical simulation demonstrates that the optimal workpiece pose can significantly reduce the overall tool offset during machining and can lower the variation of the tool offset along the milling path.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Handbook of Industrial Robotics;Nof,1999

2. Robot machining: recent development and future research issues

3. Machining with Industrial Robots: The COMET Project Approach;Lehmann,2013

4. Hard material small-batch industrial machining robot

5. Commercial Feature Stories. Boeing: A Futuristic View of the 777 Fuse-Lage Build http://www.boeing.com/features/2014/07/bca-777-fuselage-07-14-14.page

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3