A Novel Deep Learning Stack for APT Detection

Author:

Bodström Tero,Hämäläinen Timo

Abstract

We present a novel Deep Learning (DL) stack for detecting Advanced Persistent threat (APT) attacks. This model is based on a theoretical approach where an APT is observed as a multi-vector multi-stage attack with a continuous strategic campaign. To capture these attacks, the entire network flow and particularly raw data must be used as an input for the detection process. By combining different types of tailored DL-methods, it is possible to capture certain types of anomalies and behaviour. Our method essentially breaks down a bigger problem into smaller tasks, tries to solve these sequentially and finally returns a conclusive result. This concept paper outlines, for example, the problems and possible solutions for the tasks. Additionally, we describe how we will be developing, implementing and testing the method in the near future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Network Forensic Framework for Advanced Persistent Threat Attack Attribution Through Deep Learning;IEEE Transactions on Intelligent Transportation Systems;2024-09

2. A comprehensive comparison study of ML models for multistage APT detection: focus on data preprocessing and resampling;The Journal of Supercomputing;2024-03-16

3. Prescriptive Analytics-based Robust Decision-Making Model for Cyber Disaster Risk Reduction;2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC);2024-02-07

4. An Adaptive Defensive Mechanism for DQN Storage Resources Allocation from Advanced Persistent Threats;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

5. Security Algorithms to Detect and Prevent Advanced Persistent Threats in Cloud Computing: A Systematic Review;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3