Research Progress on the Oxidation Behavior of Ignition-Proof Magnesium Alloy and Its Effect on Flame Retardancy with Multi-Element Rare Earth Additions: A Review

Author:

Zuo Duquan123ORCID,Ding Haolin2,Zhi Maoyong12,Xu Yi12,Zhang Zhongbo2,Zhang Minghao3

Affiliation:

1. Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, China

2. College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan 618307, China

3. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The phenomenon of high-temperature oxidation in magnesium alloys constitutes a significant obstacle to their application in the aerospace field. However, the incorporation of active elements such as alloys and rare earth elements into magnesium alloys alters the organization and properties of the oxide film, resulting in an enhancement of their antioxidation capabilities. This paper comprehensively reviews the impact of alloying elements, solubility, intermetallic compounds (second phase), and multiple rare earth elements on the antioxidation and flame-retardant effects of magnesium alloys. The research progress of flame-retardant magnesium alloys containing multiple rare earth elements is summarized from two aspects: the oxide film and the matrix structure. Additionally, the existing flame-retardancy models for magnesium alloys and the flame-retardant mechanisms of various flame-retardant elements are discussed. The results indicate that the oxidation of rare earth magnesium alloys is a complex process determined by internal properties such as the structure and properties of the oxide film, the type and amount of rare earth elements added, the proportion of multiple rare earth elements, synergistic element effects, as well as external properties like heat treatment, oxygen concentration, and partial pressure. Finally, some issues in the development of multi-rare earth magnesium alloys are raised and the potential directions for the future development of rare earth flame-retardant magnesium alloys are discussed. This paper aims to promote an understanding of the oxidation behavior of flame-retardant magnesium alloys and provide references for the development of rare earth flame-retardant magnesium alloys with excellent comprehensive performance.

Funder

China Postdoctoral Science Foundation

Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3