Effects of Hydrostatic Pressure and Cation Type on the Chloride Ion Transport Rate in Marine Concrete: An Experimental Study

Author:

Liu Huanqiang1,Yang Xueqing2,Jiang Linhua3,Li Keliang1,Jin Weizhun1

Affiliation:

1. School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China

Abstract

The effect of hydrostatic pressure and cation type on chloride ion transport in marine underwater concrete cannot be ignored. The study of the chloride ion transport behavior of concrete under the effect of hydrostatic pressure and cation type coupling can provide a basis for durability design and the protection of marine concrete. In this work, the chloride ion transport behavior of marine concrete in four common chloride salt solutions under different hydrostatic pressures is studied by a hydrostatic pressure test device developed by the authors. The results show that hydrostatic pressure and its action time significantly influence the chloride ion transport behavior in marine concrete; the higher the hydrostatic pressure of concrete, the faster the chloride ion transport rate. The longer the time, the more chloride ions accumulated in the same position, and the farther the chloride ion transport distance. Cation type has a certain influence on the transport process of chloride ions. Under the same test conditions, the chloride ion transport rate in a divalent cation solution is about 5% higher than that in a monovalent cation solution. The results also show that the chloride ion binding capacity under hydrostatic pressure is only 10~20% of that under natural diffusion. Using the test results, a predictive model of a chloride ion apparent transport coefficient based on the hydrostatic pressure and hydrostatic pressure action time corrected by a cation type influence coefficient is established.

Funder

Henan Provincial Science and Technology Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3