Optimization of the Load of Transition Metal Oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 Nanoparticles in Catalytic Steam Decomposition of n-C7 Asphaltenes at Low Temperatures

Author:

Medina Oscar E.,Gallego Jaime,Arias-Madrid Daniela,Cortés Farid B.,Franco Camilo A.

Abstract

The main objective of this work is the catalyst optimization of Fe2O3-, Co3O4-, NiO- and/or PdO- (transition element oxides—TEO) functionalized CeO2 nanoparticles to maximize the conversion of asphaltenes under isothermal conditions at low temperatures (<250 °C) during steam injection processes. Adsorption isotherms and the subsequent steam decomposition process of asphaltenes for evaluating the catalysis were performed through batch adsorption experiments and thermogravimetric analyses coupled to Fourier-transform infrared spectroscopy (FTIR), respectively. The adsorption isotherms and the catalytic behavior were described by the solid-liquid equilibrium (SLE) model and isothermal model, respectively. Initially, three pairs of metal oxide combinations at a mass fraction of 1% of loading of CeNi1Pd1, CeCo1Pd1, and CeFe1Pd1 nanoparticles were evaluated based on the adsorption and catalytic activity, showing better results for the CeNi1Pd1 due to the Lewis acidity changes. Posteriorly, a simplex-centroid mixture design of experiments (SCMD) of three components was employed to optimize the metal oxides concentration (Ni and Pd) onto the CeO2 surface by varying the oxides concentration for mass fractions from 0.0% to 2.0% to maximize the asphaltene conversion at low temperatures. Results showed that by incorporating mono-elemental and bi-elemental oxides onto CeO2 nanoparticles, both adsorption and isothermal conversion of asphaltenes decrease in the order CeNi1Pd1 > CePd2 > CeNi0.66Pd0.66 > CeNi2 > CePd1 > CeNi1 > CeO2. It is worth mentioning that bi-elemental nanoparticles reduced the gasification temperature of asphaltenes in a larger degree than mono-elemental nanoparticles at a fixed amount of adsorbed asphaltenes of 0.02 mg·m−2, confirming the synergistic effects between Pd and Fe, Co, and Ni. Further, optimized nanoparticles (CeNi0.89Pd1.1) have the best performance by obtaining 100% asphaltenes conversion in less than 90 min at 220 °C while reducing 80% the activation energy.

Funder

Agencia Nacional de Hidrocarburos - ANH

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3