Author:
Maeda Yoshihiro,Fukushima Norishige,Matsuo Hiroshi
Abstract
In this paper, we propose acceleration methods for edge-preserving filtering. The filters natively include denormalized numbers, which are defined in IEEE Standard 754. The processing of the denormalized numbers has a higher computational cost than normal numbers; thus, the computational performance of edge-preserving filtering is severely diminished. We propose approaches to prevent the occurrence of the denormalized numbers for acceleration. Moreover, we verify an effective vectorization of the edge-preserving filtering based on changes in microarchitectures of central processing units by carefully treating kernel weights. The experimental results show that the proposed methods are up to five-times faster than the straightforward implementation of bilateral filtering and non-local means filtering, while the filters maintain the high accuracy. In addition, we showed effective vectorization for each central processing unit microarchitecture. The implementation of the bilateral filter is up to 14-times faster than that of OpenCV. The proposed methods and the vectorization are practical for real-time tasks such as image editing.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference52 articles.
1. Bilateral Filtering: Theory and Applications;Paris,2009
2. Guided Image Filtering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献