Investigation of the Technological Possibility of Laser Hardening of Stainless Steel 14Cr17Ni2 to a Deep Depth of the Surface

Author:

Somonov VladislavORCID,Tsibulskiy Igor,Mendagaliyev Ruslan,Akhmetov Alexander

Abstract

The article presents the results of a research of the process of laser hardening of steel 14Cr17Ni2 (AISI 431) by radiation of a high-power fiber laser LS-16. Assessment of the theoretically possible maximum depth in laser processing without additional beam transformations, the use of additional coatings and devices were shown. The results of experiments on increasing the depth of the hardened layer during laser processing by using scanning of the laser beam and optimally selected mode parameters without scanning are demonstrated. The influence of the number of passes on the depth of the hardened layer is investigated. The microstructure of hardened samples was studied and quantitative estimation of structural components was carried out. The microhardness of hardened samples at different modes of laser hardening was measured.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference19 articles.

1. Investigation of the structural state and mechanical properties of the surface layer of a blade made of 15Cr11MoV steel hardened with high-frequency currents;Glushakova;Bull. KHNADU,2017

2. Laser surface hardening: a review

3. Protecting turbine blades Aerospace America;Motyka;Aerosp. Am.,2017

4. Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3