Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis

Author:

Zhou Yaqing,Jiang RongliORCID,Jiang Yali,Fu YahongORCID,Manafhan Yerbolat,Zhu Jinfu,Jia Enzhi

Abstract

Objectives: N6-methylladenosine (m6A) modification has not been fully studied in atherosclerosis. The objectives of this study were to investigate differentially expressed m6A methylated peaks and mRNAs, along with the regulatory role of methyltransferase 3 (METTL3) in pathological processes of atherosclerosis. Methods: The pathological models of human coronary artery smooth muscle cells (HCASMCs) were induced in vitro. The differentially expressed mRNAs and m6A peaks were identified by RNA-Seq and meRIP-Seq. The potential mechanisms were analyzed via bioinformatic assays. Methylases expression was tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) in HCASMCs, and by immunohistochemical assays in 40 human coronary arteries. The knockdown of METTL3 expression in cells was performed by siRNA transfection, and cell proliferation and migration were detected after transfection. Results: We identified 5121 m6A peaks and 883 mRNAs that were expressed differentially in the pathological processes of HCASMCs. Bioinformatic analyses showed that the different m6A peaks were associated with cell growth and cell adhesion, and the 883 genes showed that the extracellular matrix and PI3K/AKT pathway regulate the processes of HCASMCs. Additionally, 10 hub genes and 351 mRNAs with differential methylation and expression levels were found. METTL3 was upregulated in the arteries with atherosclerotic lesions and in the proliferation and migration model of HCASMCs, and pathological processes of HCASMCs could be inhibited by the knockdown of METTL3. The mechanisms behind regulation of migration and proliferation reduced by siMETTL3 are concerned with protein synthesis and energy metabolism. Conclusions: These results revealed a new m6A epigenetic method to regulate the progress of atherosclerosis, which suggest approaches for potential therapeutic interventions that target METTL3 for the prevention and treatment of coronary artery diseases.

Funder

National Natural Science Foundation of China

Science Foundation Project of ILi & Jiangsu Joint Institute of Health

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3