Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives

Author:

Bravo Gary Álvarez,Cedeño René Robles,Casadevall Marc Puig,Ramió-Torrentà LluísORCID

Abstract

Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are bioactive lipid molecules that are ubiquitously expressed in the human body and play an important role in the immune system. S1P-S1PR signaling has been well characterized in immune trafficking and activation in both innate and adaptive immune systems. Despite this knowledge, the full scope in the pathogenesis of autoimmune disorders is not well characterized yet. From the discovery of fingolimod, the first S1P modulator, until siponimod, the new molecule recently approved for the treatment of secondary progressive multiple sclerosis (SPMS), there has been a great advance in understanding the S1P functions and their involvement in immune diseases, including multiple sclerosis (MS). Modulation on S1P is an interesting target for the treatment of various autoimmune disorders. Improved understanding of the mechanism of action of fingolimod has allowed the development of the more selective second-generation S1PR modulators. Subtype 1 of the S1PR (S1PR1) is expressed on the cell surface of lymphocytes, which are known to play a major role in MS pathogenesis. The understanding of S1PR1’s role facilitated the development of pharmacological strategies directed to this target, and theoretically reduced the safety concerns derived from the use of fingolimod. A great advance in the MS treatment was achieved in March 2019 when the Food and Drug Association (FDA) approved Siponimod, for both active secondary progressive MS and relapsing–remitting MS. Siponimod became the first oral disease modifying therapy (DMT) specifically approved for active forms of secondary progressive MS. Additionally, for the treatment of relapsing forms of MS, ozanimod was approved by FDA in March 2020. Currently, there are ongoing trials focused on other new-generation S1PR1 modulators. This review approaches the fundamental aspects of the sphingosine phosphate modulators and their main similarities and differences.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3