S-Adenosyl-L-Methionine and Cu(II) Impact Green Plant Regeneration Efficiency

Author:

Orłowska RenataORCID,Zebrowski JacekORCID,Zimny Janusz,Androsiuk PiotrORCID,Bednarek Piotr TomaszORCID

Abstract

The biological improvement of triticale, a cereal of increasing importance in agriculture, may be accelerated via the production of doubled haploid lines using in vitro culture. Among the relevant factors affecting the culture efficiency are Cu(II) or Ag(I) acting, e.g., as cofactors of enzymes. The copper ions are known to positively affect green plant regeneration efficiency. However, the biochemical basis, mainly its role in the generation of in vitro-induced genetic and epigenetic variation and green plant regeneration efficiency, is not well understood. Here, we employed structural equation modeling to evaluate the relationship between de novo DNA methylation affecting the asymmetric context of CHH sequences, the methylation-sensitive Amplified Fragment Length Polymorphism related sequence variation, and the concentration of Cu(II) and Ag(I) ions in induction media, as well as their effect on S-adenosyl-L-methionine perturbations, observed using FTIR spectroscopy, and the green plant regeneration efficiency. Our results allowed the construction of a theory-based model reflecting the biological phenomena associated with green plant regeneration efficiency. Furthermore, it is shown that Cu(II) ions in induction media affect plant regeneration, and by manipulating their concentration, the regeneration efficiency can be altered. Additionally, S-adenosyl-L-methionine is involved in the efficiency of green plant regeneration through methylation of the asymmetric CHH sequence related to de novo methylation. This shows that the Yang cycle may impact the production of green regenerants.

Funder

MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT, Poland

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3