Understanding Spatial Variability of Air Quality in Sydney: Part 1—A Suburban Balcony Case Study

Author:

Simmons Jack,Paton-Walsh Clare,Phillips Frances,Naylor Travis,Guérette Élise-Andrée,Burden Sandy,Dominick Doreena,Forehead HughORCID,Graham Joel,Keatley Thomas,Gunashanhar Gunaratnam,Kirkwood John

Abstract

There is increasing awareness in Australia of the health impacts of poor air quality. A common public concern raised at a number of “roadshow” events as part of the federally funded Clean Air and Urban Landscapes Hub (CAUL) project was whether or not the air quality monitoring network around Sydney was sampling air representative of typical suburban settings. In order to investigate this concern, ambient air quality measurements were made on the roof of a two-storey building in the Sydney suburb of Auburn, to simulate a typical suburban balcony site. Measurements were also taken at a busy roadside and these are discussed in a companion paper (Part 2). Measurements made at the balcony site were compared to data from three proximate regulatory air quality monitoring stations: Chullora, Liverpool and Prospect. During the 16-month measurement campaign, observations of carbon monoxide, oxides of nitrogen, ozone and particulate matter less than 2.5-µm diameter at the simulated urban balcony site were comparable to those at the closest permanent air quality stations. Despite the Auburn site experiencing 10% higher average carbon monoxide amounts than any of the permanent air quality monitoring sites, the oxides of nitrogen were within the range of the permanent sites and the pollutants of greatest concern within Sydney (PM2.5 and ozone) were both lowest at Auburn. Similar diurnal and seasonal cycles were observed between all sites, suggesting common pollutant sources and mechanisms. Therefore, it is concluded that the existing air quality network provides a good representation of typical pollution levels at the Auburn “balcony” site.

Funder

National Environmental Science Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3