Experimental Analysis on the Behaviors of a Laboratory Surface Fire Spreading across a Firebreak with Different Winds

Author:

Guo Hanwen1,Yang Zhengyuan1,Ye Ziqun1,Xiang Dong1,Gao Yunji1,Zhang Yuchun1

Affiliation:

1. Department of Fire Protection Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In this work, a series of laboratory surface fire experiments were performed over a pine needle fuel bed to investigate the effectiveness of a firebreak and the behaviors of a surface fire across a firebreak. Seven wind velocities of 0~3.0 m/s and six firebreak widths of 10~35 cm are varied. The behaviors of a surface fire across the firebreak, the heat flux received by fuel surface and fuel temperature before and after the firebreak are analyzed and compared simultaneously. The main conclusions are as follows: the behaviors of a surface fire spreading across a firebreak under different wind velocities are classified into three categories—no ignition, ignition by flame contact and ignition by spot fires. When the wind velocity is not more than 1.0 m/s, the surface fire cannot successfully cross the firebreak; as wind velocity changes from 1.5 m/s to 2.5 m/s, the fuel after the firebreak can be ignited by flame contact for relatively narrow firebreak conditions; when the wind velocity increases to 3.0 m/s, the burning fuel can be blown away along the fuel bed, and the fuel behind the firebreak will be ignited by spot fire. A linear relationship between the threshold of firebreak width and the fireline intensity is obtained, and the linear fitting coefficient in this paper is larger than the results reported by Wilson (0.36). For no ignition conditions, the fuel temperature and the heat flux received by the fuel after firebreak are significantly lower than those before the firebreak, whereas their variations over time are similar to those before the firebreak for ignition conditions. Moreover, for no ignition conditions, the maximum fuel temperature and the heat flux after the firebreak increase with wind velocity, but decrease with firebreak width. Additionally, when the fuel temperature (253 °C) and the heat flux received by the fuel considering the radiation and convection (43 kW/m2) after firebreak exceed a threshold value, the surface fire can successfully cross the firebreak.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Forestry

Reference33 articles.

1. Modelling forest fire and firebreak scenarios in a mediterranean mountainous catchment: Impacts on sediment loads;Thomas;J. Environ. Manag.,2021

2. Viegas, D.X., Simeoni, A., Xanthopoulos, G., Rossa, C., Ribeiro, L.M., Pita, L.P., Stipanicev, D., Zinoviev, A., Weber, R., and Dold, J. (2009). Recent Forest Fire Related Accidents in Europe, Office for Official Publications of the European Communities.

3. Analysis of forest fire fatalities in southern Europe: Spain, Portugal, Greece and Sardinia (Italy);Xanthopoulos;Int. J. Wildland Fire,2019

4. How to build a firebreak to stop smouldering peat fire: Insights from a laboratory-scale study;Lin;Int. J. Wildland Fire,2021

5. Rothermel, R.C. (1972). A Mathematical Model for Predicting Fire Spread in Wild Land Fuels.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3