Lunar Lithium-7 Sensing (δ7Li): Spectral Patterns and Artificial Intelligence Techniques

Author:

Fernandez Julia1ORCID,Fernandez Susana1ORCID,Diez Enrique1ORCID,Pinilla-Alonso Noemi2ORCID,Pérez Saúl1ORCID,Iglesias Santiago1ORCID,Buendía Alejandro1ORCID,Rodríguez Javier1ORCID,de Cos Javier1ORCID

Affiliation:

1. Instituto de Ciencias y Tecnologías Espaciales de Asturias, Universidad de Oviedo, 33004 Oviedo, Spain

2. Florida Space Institute, University of Central Florida, Orlando, FL 32816, USA

Abstract

Lithium, a critical natural resource integral to modern technology, has influenced diverse industries since its discovery in the 1950s. Of particular interest is lithium-7, the most prevalent lithium isotope on Earth, playing a vital role in applications such as batteries, metal alloys, medicine, and nuclear research. However, its extraction presents significant environmental and logistical challenges. This article explores the potential for lithium exploration on the Moon, driven by its value as a resource and the prospect of cost reduction due to the Moon’s lower gravity, which holds promise for future space exploration endeavors. Additionally, the presence of lithium in the solar wind and its implications for material transport across celestial bodies are subjects of intrigue. Drawing from a limited dataset collected during the Apollo missions (Apollo 12, 15, 16, and 17) and leveraging artificial intelligence techniques and sample expansion through bootstrapping, this study develops predictive models for lithium-7 concentration based on spectral patterns. The study areas encompass the Aitken crater, Hadley Rima, and the Taurus–Littrow Valley, where higher lithium concentrations are observed in basaltic lunar regions. This research bridges lunar geology and the formation of the solar system, providing valuable insights into celestial resources and enhancing our understanding of space. The data used in this study were obtained from the imaging sensors (infrared, visible, and ultraviolet) of the Clementine satellite, which significantly contributed to the success of our research. Furthermore, the study addresses various aspects related to statistical analysis, sample quality validation, resampling, and bootstrapping. Supervised machine learning model training and validation, as well as data import and export, were explored. The analysis of data generated by the Clementine probe in the near-infrared (NIR) and ultraviolet-visible (UVVIS) spectra revealed evidence of the presence of lithium-7 (Li-7) on the lunar surface. The distribution of Li-7 on the lunar surface is non-uniform, with varying concentrations in different regions of the Moon identified, supporting the initial hypothesis associating surface Li-7 concentration with exposure to solar wind. While a direct numerical relationship between lunar topography and Li-7 concentration has not been established due to morphological diversity and methodological limitations, preliminary results suggest significant economic and technological potential in lunar lithium exploration and extraction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3