Author:
Aranda Víctor,Figueroa Ignacio,González Gonzalo,García-Hinojosa J.,Lara-Rodríguez Gabriel
Abstract
The Al–Si–Fe system has drawn the attention of the scientific community due to its capacity to replace parts in several manufacturing industries, as this alloy system is very sensitive to small additions of transition metals. Therefore, the aim of this work is to study the effect of Cr, Ti, and Mn additions in the Al–20Si–5Fe (wt. %) alloy and to study the modification of the iron intermetallic and the microstructural refinement through the formation of secondary phases. Al–20Si–5Fe–X (X = Cr, Mn and Ti at 1.0, 3.0, and 5.0 wt. %) alloy ingots were prepared by arc melting furnace. The elemental chemical analysis was performed by X-ray fluorescence spectrometry (XRF). The microstructure of all samples was investigated by scanning electron microscopy and X-ray diffraction. Finally, microhardness was measured in order correlate the hardness with the formation of the different compounds. The highest hardness was found for the alloy with the 5 wt. % Cr. The addition of Ti and Mn raised the hardness by ~35 HVN (Vickers microhardness) when compared to that of AlSiFe master alloy. Important changes were also observed in the microstructure. Depending on the Cr, Ti, and Mn additions, the resulting microstructure was dendritic (CrFe), acicular (Ti5Si3), and “bone like” (Mn0.2Fe0.8), respectively.
Funder
Universidad Nacional Autónoma de México
Consejo Nacional de Ciencia y Tecnología
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献