Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize

Author:

Li Shuyan,Zhao Junfang,Li Junling,Shao Ruixin,Li Hongping,Fang Wensong,Hu Liting,Liu Tianxue

Abstract

Global warming increases the risk of high-temperature injury to maize. Inter- and mixed-cropping of maize varieties with different genotypes is one way to effectively alleviate the high-temperature injury during the flowering period. However, the mitigation effect of different varieties and intercropping modes on high-temperature injury is still unclear. Based on previous years of field production, Denghai 605, which is more sensitive to high temperatures during the flowering period, was determined as the main test variety, and Zhengdan 958, Dedan 5, Weike 702, and Xianyu 335, which have great genotypic differences, were used as auxiliary varieties. The main test varieties and auxiliary varieties were intercropped and mixed cropped, respectively. Plant height, ear height, leaf area index, population light transmittance, ear characteristics, and yield were measured, and the land equivalent ratio (LER) was calculated. The plant height of Denghai 605 intercropped with Zhengdan 958 and Dedan 5 and mixed with Weike 702 and Xianyu 335 decreased significantly. The population light transmittance of the bottom or middle layer in Denghai 605 increased significantly when intercropped with other varieties. The grain number per ear increased significantly under inter- and mixed cropping with Zhengdan 958 and Weike 702. Except under intercropping with Dedan 5, the yield of Denghai 605 increased significantly, by 8.8–28.0%, under inter- and mixed cropping. Under intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702 and Xianyu 335, respectively, the group land equivalent ratio was greater than 1.1, indicating that under the combination of these varieties, inter- and mixed cropping effectively reduced the impact of high temperatures during flowering.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3