Flow Behavior and Mechanical Properties of Multi-Pass Thermomechanically Processed 7075 Al-Alloy

Author:

El-Shenawy Eman1ORCID,Farahat Ahmed I. Z.1ORCID,Ragab Adham E.2ORCID,Elsayed Ahmed3,Reda Reham4ORCID

Affiliation:

1. Plastic Deformation Department, Metal Technology Institute, Central Metallurgical R&D Institute (CMRDI), Cairo 11421, Egypt

2. Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

3. Advanced Forming Research Centre, Strathclyde University, Renfrew, Glasgow PA4 9LJ, UK

4. Mechanical Engineering Department, Faculty of Engineering, Suez University, Suez 43512, Egypt

Abstract

Research on multi-pass hot processing of 7075 Al-alloy was rarely discussed. This study aims to design and evaluate different thermomechanical processing strategies (TMPS) to produce 3 mm-thick sheets of 7075 Al-alloy. A physical simulation was performed using the hot compression test of a Gleeble 3500 to study flow mechanisms and microstructural evolution, while an experimental investigation was carried out using a rolling mill to examine the effect of TMPS on the mechanical properties. Four hot forming strategies were designed and tested at a constant strain rate of 0.1 s−1 over a temperature range of 200–450 °C. These strategies involved applying a constant amount of deformation of 65–70% in single (SP), double (DP), triple (TP), and quadruple (QP) passes of thermomechanical processing to study the influence of multi-pass thermomechanical processing on the final mechanical properties and industrial feasibility. The microstructure analysis showed a significant refinement and more uniform distribution of precipitates with an increasing number of passes, as observed through optical micrographs and the full width at half maximum (FWHM)-position relationship of XRD data. The results indicate that QP is the optimum strategy for producing the best mechanical properties in the shortest production time.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3