The Role of Large Dams in a Transboundary Drought Management Co-Operation Framework—Case Study of the Kabul River Basin

Author:

Taraky Yar M.ORCID,McBean Edward,Liu Yongbo,Daggupati Prasad,Shrestha Narayan Kumar,Jiang AlbertORCID,Gharabaghi BahramORCID

Abstract

Hydrologic drought is a frequent phenomenon in the transboundary Kabul River Basin (KRB), the vital resource shared between the two nations of Afghanistan and Pakistan. While the KRB has vast water resources, these resources are subject to extreme hydrologic events and, as a result, are not adequately managed to deal with the stress during drought conditions in the transboundary setting with no formal agreement or treaty. Rapid population growth and increases in agricultural land will require balanced water distribution to meet the array of needs. The Soil and Water Assessment Tool (SWAT) is used to evaluate distribution options for flow frequencies under existing and proposed large dams in the headwaters of the KRB. The calibrated SWAT streamflow results are employed for statistical analyses of the Standardized Streamflow Index (SSI) and Annual Cumulative Deficit Volume (ACDV) to investigate hydrologic drought time series and identify the role of proposed dams to be used for drought mitigation. Based on the SSI, proposed dams can provide additional storage that will partially address hydrologic droughts in the future. At the same time, restrictions on agricultural land expansion and water intakes are other measures to facilitate balanced water resource availability. This study discusses the intricacies of transboundary conflict and cooperation, water rights, and drought risk management; as well, recommendations for a KRB transboundary Drought Task Force (DTF) between Afghanistan and Pakistan are provided, to develop a science-based policy for using the stored waters in large dams for drought relief, fairly and transparency.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3