Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco

Author:

Adamski Robert,Siuta DorotaORCID,Kukfisz BożenaORCID,Frydrysiak MichałORCID,Prochoń MirosławaORCID

Abstract

Knowledge of the drying properties of tobacco in high temperatures above 100 °C and its dust are crucial in the design of dryers, both in the optimization of the superheated-steam-drying process and in the correct selection of innovative explosion protection and mitigation systems. In this study, tobacco properties were determined and incorporated into the proposed model of an expanding superheated steam flash dryer. The results obtained from the proposed model were validated by using experimental data yielded during test runs of an industrial scale of a closed-loop expansion dryer on lamina cut tobacco. Moreover, the explosion and fire properties of tobacco dust before and after the superheated steam-drying process at 160, 170, 180, and 190 °C were experimentally investigated, using a 20 L spherical explosion chamber, a hot plate apparatus, a Hartmann tube apparatus, and a Godbert–Greenwald furnace apparatus. The results indicate that the higher the drying temperature, the more likely the ignition of the dust tobacco cloud, the faster the explosion flame propagation, and the greater the explosion severity. Tobacco dust is of weak explosion class. Dust obtained by drying with superheated steam at 190 °C is characterized by the highest value of explosion index amounting to 109 ± 14 m·bar·s−1, the highest explosion pressure rate (405 ± 32 bar/s), and the maximum explosion pressure (6.7 ± 0.3 bar). The prevention of tobacco-dust accumulation and its removal from the outer surfaces of machinery and equipment used in the superheated steam-drying process are highly desirable.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3