Bearing Fault Diagnosis Using ACWGAN-GP Enhanced by Principal Component Analysis

Author:

Chen Bin12,Tao Chengfeng12,Tao Jie1,Jiang Yuyan12,Li Ping3

Affiliation:

1. School of Management Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China

2. Key Laboratory of Multidisciplinary Management and Control of Complex Systems of Anhui Higher Education Institutes, Anhui University of Technology, Ma’anshan 243002, China

3. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Rolling bearings are one of the most widely used parts in all kinds of rotating machinery (including wind power equipment) and also one of the most easily damaged parts, which makes fault diagnosis of rolling bearings a promising research field. To this end, recent studies mainly focus on fault diagnosis cooperating with deep learning. However, in practical engineering, it is very challenging to collect massive fault data, resulting in low accuracy of bearing fault classification. To solve the problem, an auxiliary classifier optimized by a principal component analysis method is proposed to generate an adversarial network model in which Wasserstein distance and gradient penalty are used to improve the stability of the network training process in case of over-fitting and gradient disappearance during model training. Specifically, we implement the model system using two main components. First, the one-dimensional time domain signal is transformed into a two-dimensional grayscale image and the principal component analysis is employed to reduce the dimension of the original data; this is instead of random noise as the input of the generator thereby preserving the characteristics of the original data to a certain extent. Second, in a generative adversarial network, the label information of the fault data is inserted into the generator to achieve supervised learning, thereby improving the data generation performance and reducing the training time cost. The experimental results show that our model could produce high-quality samples that are similar to real samples and that it could significantly improve the classification accuracy of fault diagnosis in the case of insufficient fault samples.

Funder

National Natural Science Foundation

Open Fund of Key Laboratory of Anhui Higher Education Institutes

Jiangsu Natural Science Foundation

Natural Science Research of Jiangsu Higher Education Institutes

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3