Permeability Prediction Using Machine Learning Methods for the CO2 Injectivity of the Precipice Sandstone in Surat Basin, Australia

Author:

Rezaee Reza,Ekundayo JamiuORCID

Abstract

This paper presents the results of a research project which investigated permeability prediction for the Precipice Sandstone of the Surat Basin. Machine learning techniques were used for permeability estimation based on multiple wireline logs. This information improves the prediction of CO2 injectivity in this formation. Well logs and core data were collected from 5 boreholes in the Surat Basin, where extensive core data and complete sets of conventional well logs exist for the Precipice Sandstone. Four different machine learning (ML) techniques, including Random Forest (RF), Artificial neural network (ANN), Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR), were independently trained with a wide range of hyper-parameters to ensure that not only is the best model selected, but also the right combination of model parameters is selected. Cross-validation for 20 different combinations of the seven available input logs was used for this study. Based on the performances in the validation and blind testing phases, the ANN with all seven logs used as input was found to give the best performance in predicting permeability for the Precipice Sandstone with the coefficient of determination (R2) of about 0.93 and 0.87 for the training and blind data sets respectively. Multi-regression analysis also appears to be a successful approach to calculate reservoir permeability for the Precipice Sandstone. Models with a complete set of well logs can generate reservoir permeability with R2 of more than 90%.

Funder

Australian National Low Emissions Coal Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3