Abstract
Basil (Ocimum basilicum) was cultivated in northern Germany in three different hydroponic components: grow pipes, a raft, and an ebb-and-flood gravel substrate. The nutrients originated from the intensive production of African catfish (Clarias gariepinus) with 140 fish/m3 under decoupled aquaponic conditions. After 41 days, plants were significantly taller in the gravel components (101.8 ± 8.3 cm), followed by the grow pipes (96.7 ± 7.0 cm), and the raft (94.8 ± 8.6 cm) components (gravel > grow pipes = raft). The leaf number was high and not significantly different between the grow pipes (518.0 ± 81.4), gravel (515.1 ± 133.0), and raft components (493.7 ± 124.8; grow pipes = raft = gravel). Basil in the grow-pipe subsystems developed rapid root growth and clogged the pipes with heterogeneous plant growth. Basil production in northern Germany in grow-pipe, raft, and gravel hydro-components is possible by using effluents from intensive C. gariepinus aquaculture without additional fertilizer in the plant grow-out phase. Further research should focus on optimizing grow pipes by maintaining an optimal root–water contact area, as well as on new technologies such as aquaponics (s.l.) gardening.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development