A Novel Occupancy Mapping Framework for Risk-Aware Path Planning in Unstructured Environments

Author:

Laconte JohannORCID,Kasmi Abderrahim,Pomerleau François,Chapuis Roland,Malaterre Laurent,Debain ChristopheORCID,Aufrère Romuald

Abstract

In the context of autonomous robots, one of the most important tasks is to prevent potential damage to the robot during navigation. For this purpose, it is often assumed that one must deal with known probabilistic obstacles, then compute the probability of collision with each obstacle. However, in complex scenarios or unstructured environments, it might be difficult to detect such obstacles. In these cases, a metric map is used, where each position stores the information of occupancy. The most common type of metric map is the Bayesian occupancy map. However, this type of map is not well suited for computing risk assessments for continuous paths due to its discrete nature. Hence, we introduce a novel type of map called the Lambda Field, which is specially designed for risk assessment. We first propose a way to compute such a map and the expectation of a generic risk over a path. Then, we demonstrate the benefits of our generic formulation with a use case defining the risk as the expected collision force over a path. Using this risk definition and the Lambda Field, we show that our framework is capable of doing classical path planning while having a physical-based metric. Furthermore, the Lambda Field gives a natural way to deal with unstructured environments, such as tall grass. Where standard environment representations would always generate trajectories going around such obstacles, our framework allows the robot to go through the grass while being aware of the risk taken.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics;Sensors;2024-03-16

2. Risk-Aware Navigation for Mobile Robots in Unknown 3D Environments;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. D+: A risk aware platform agnostic heterogeneous path planner;Expert Systems with Applications;2023-04

4. D*+: A Risk Aware Platform Agnostic Heterogeneous Path Planner;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3