High-Temperature Tensile Behaviour of GTAW Joints of P92 Steel and Alloy 617 for Two Different Fillers

Author:

Kumar Amit1ORCID,Sirohi Sachin2ORCID,Pandey Shailesh Mani3,Kumar Pradeep4,Fydrych Dariusz5ORCID,Pandey Chandan1ORCID

Affiliation:

1. Mechanical Department, Indian Institute of Technology Jodhpur, N.H. 62 Nagaur Road, Karwar 342037, India

2. Mechanical Department, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar 201204, India

3. Department of Mechanical Engineering, National Institute of Technology, Patna 800005, India

4. Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667, India

5. Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland

Abstract

This study explores the high-temperature (HT) tensile rupture characteristics of a dissimilar gas-tungsten-arc-welded (GTAW) joint between P92 steel and Alloy 617, fabricated using ER62S-B9 and ERNiCrCoMo-1 fillers. The high-temperature tensile tests were performed at elevated temperatures of 550 °C and 650 °C. An optical microscope (OM) and a field emission scanning electron microscope (FESEM) were utilized to characterize the joint. The high-temperature test results indicated that the specimen failed at the P92 base metal/intercritical heat-affected zone (ICHAZ) rather than the weld metal for the ERNiCrCoMo-1(IN617) filler. This finding confirmed the suitability of the joint for use in the Indian advanced ultra-supercritical (A-USC) program. The fracture surface morphology and presence of precipitates were analysed using an SEM equipped with energy dispersive spectroscopy (EDS). The appearance of the dimples and voids confirmed that both welded fillers underwent ductile–dominant fracture. EDS analysis revealed the presence of Cr-rich M23C6 phases, which was confirmed on the fracture surface of the ER62S-B9 weld (P92-weld). The hardness plot was analysed both in the as-welded condition and after the fracture.

Funder

Indian Institute of Technology Jodhpur, India

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3