The Use of the Random Number Generator and Artificial Intelligence Analysis for Dimensionality Reduction of Follicular Lymphoma Transcriptomic Data

Author:

Carreras JoaquimORCID,Kikuti Yara YukieORCID,Miyaoka Masashi,Hiraiwa Shinichiro,Tomita Sakura,Ikoma Haruka,Kondo Yusuke,Ito Atsushi,Hamoudi RifatORCID,Nakamura Naoya

Abstract

Follicular lymphoma (FL) is one of the most frequent subtypes of non-Hodgkin lymphomas. This research predicted the prognosis of 184 untreated follicular lymphoma patients (LLMPP GSE16131 series), using gene expression data and artificial intelligence (AI) neural networks. A new strategy based on the random number generation was used to create 120 different and independent multilayer perceptron (MLP) solutions, and 22,215 gene probes were ranked according to their averaged normalized importance for predicting the overall survival. After dimensionality reduction, the final neural network architecture included (1) newly identified predictor genes related to cell adhesion and migration, cell signaling, and metabolism (EPB41L4B, MOCOS, SPIN2A, BTD, SRGAP3, CTNS, PRB1, L1CAM, and CEP57); (2) the international prognostic index (IPI); and (3) other relevant immuno-oncology, immune microenvironment, and checkpoint markers (CD163, CSF1R, FOXP3, PDCD1, TNFRSF14 (HVEM), and IL10). The performance of this neural network was good, with an area under the curve (AUC) of 0.89. A comparison with other machine learning techniques (C5 tree, logistic regression, Bayesian network, discriminant analysis, KNN algorithms, LSVM, random trees, SVM, tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural network) was also made. In conclusion, the overall survival of follicular lymphoma was predicted with a neural network with high accuracy.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3