Evaluating Ovarian Cancer Chemotherapy Response Using Gene Expression Data and Machine Learning

Author:

Amniouel Soukaina1ORCID,Yalamanchili Keertana12,Sankararaman Sreenidhi13,Jafri Mohsin Saleet14ORCID

Affiliation:

1. School of System Biology, George Mason University, Fairfax, VA 22030, USA

2. School of Engineering, Brown University, Providence, RI 02912, USA

3. Department of Biomedical Engineering, The John Hopkins University, Baltimore, MD 21218, USA

4. Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Abstract

Background: Ovarian cancer (OC) is the most lethal gynecological cancer in the United States. Among the different types of OC, serous ovarian cancer (SOC) stands out as the most prevalent. Transcriptomics techniques generate extensive gene expression data, yet only a few of these genes are relevant to clinical diagnosis. Methods: Methods for feature selection (FS) address the challenges of high dimensionality in extensive datasets. This study proposes a computational framework that applies FS techniques to identify genes highly associated with platinum-based chemotherapy response on SOC patients. Using SOC datasets from the Gene Expression Omnibus (GEO) database, LASSO and varSelRF FS methods were employed. Machine learning classification algorithms such as random forest (RF) and support vector machine (SVM) were also used to evaluate the performance of the models. Results: The proposed framework has identified biomarkers panels with 9 and 10 genes that are highly correlated with platinum–paclitaxel and platinum-only response in SOC patients, respectively. The predictive models have been trained using the identified gene signatures and accuracy of above 90% was achieved. Conclusions: In this study, we propose that applying multiple feature selection methods not only effectively reduces the number of identified biomarkers, enhancing their biological relevance, but also corroborates the efficacy of drug response prediction models in cancer treatment.

Funder

National Science Foundation

National Cancer Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3