Predicting Childhood Obesity Using Machine Learning: Practical Considerations

Author:

Cheng Erika R.,Steinhardt RaiORCID,Ben Miled ZinaORCID

Abstract

Previous studies demonstrate the feasibility of predicting obesity using various machine learning techniques; however, these studies do not address the limitations of these methods in real-life settings where available data for children may vary. We investigated the medical history required for machine learning models to accurately predict body mass index (BMI) during early childhood. Within a longitudinal dataset of children ages 0–4 years, we developed predictive models based on long short-term memory (LSTM), a recurrent neural network architecture, using history EHR data from 2 to 8 clinical encounters to estimate child BMI. We developed separate, sex-stratified models using 80% of the data for training and 20% for external validation. We evaluated model performance using K-fold cross-validation, mean average error (MAE), and Pearson’s correlation coefficient (R2). Two history encounters and a 4-month prediction yielded a high prediction error and low correlation between predicted and actual BMI (MAE of 1.60 for girls and 1.49 for boys). Model performance improved with additional history encounters; improvement was not significant beyond five history encounters. The combined model outperformed the sex-stratified models, with a MAE = 0.98 (SD 0.03) and R2 = 0.72. Our models show that five history encounters are sufficient to predict BMI prior to age 4 for both boys and girls. Moreover, starting from an initial dataset with more than 269 exposure variables, we were able to identify a limited set of 24 variables that can facilitate BMI prediction in early childhood. Nine of these final variables are collected once, and the remaining 15 need to be updated during each visit.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3