A Smart Pillow for Health Sensing System Based on Temperature and Humidity Sensors

Author:

Li Songsheng,Chiu Christopher

Abstract

The quality of sleep affects the patient’s health, along with the observation of vital life signs such as body temperature and sweat in sleep, is essential in the monitoring of sleep as well as clinical diagnosis. However, traditional methods in recording physiological change amidst sleep is difficult without being intrusive. The smart pillow is developed to provide a relatively easy way to observe one’s sleep condition, employing temperature and humidity sensors by implanting them inside the pillow in strategic positions. With the patient’s head on the pillow, the roles of sensors are identified as main, auxiliary or environmental temperature, based on the differences of value from three temperature sensors, thus the pattern of sleep can be extracted by statistical analysis, and the body temperature is inferred by a specially designed Fuzzy Logic System if the head-on position is stable for more than 15 min. Night sweat is reported on data from the humidity sensor. Therefore, a cloud-based health-sensing system is built in the smart pillow to collect and analyze data. Experiments from various individuals prove that statistical and inferred results reflect normal and abnormal conditions of sleep accurately. The daily sleeping information of patients from the pillow is helpful in the decision-making of diagnoses and treatment, and users can change their habits of sleep gradually by observing the data with their health professional.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA Embedded Signal Conditioning System Based on Fuzzy Logic for Temperature Measurement;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-15

2. IoT Healthcare System based on ESP32 for Smart Home;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

3. Design A Smart Pillow for Detection and Management of Snoring;2023 IEEE 8th International Conference for Convergence in Technology (I2CT);2023-04-07

4. Recognition System for Ergonomic Mattress and Pillow: Design and Fabrication;IETE Journal of Research;2023-01-08

5. Fall Detection With Wrist-Worn Watch by Observations in Statistics of Acceleration;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3