Dynamic Target Tracking of Autonomous Underwater Vehicle Based on Deep Reinforcement Learning

Author:

Shi Jiaxiang,Fang JianerORCID,Zhang QizhongORCID,Wu QiuxuanORCID,Zhang Botao,Gao FarongORCID

Abstract

Due to the unknown motion model and the complexity of the environment, the problem of target tracking for autonomous underwater vehicles (AUVs) became one of the major difficulties in model-based controllers. Therefore, the target tracking task of AUV is modeled as a Markov decision process (MDP) with unknown state transition probabilities. Based on actor–critic framework and experience replay technique, a model-free reinforcement learning algorithm is proposed to realize the dynamic target tracking of AUVs. In order to improve the performance of the algorithm, an adaptive experience replay scheme is further proposed. Specifically, the proposed algorithm utilizes the experience replay buffer to store and disrupt the samples, so that the time series samples can be used for training the neural network. Then, the sample priority is arranged according to the temporal difference error, while the adaptive parameters are introduced in the sample priority calculation, thus improving the experience replay rules. The results confirm the quick and stable learning of the proposed algorithm, when tracking the dynamic targets in various motion states. Additionally, the results also demonstrate good control performance regarding both stability and computational complexity, thus indicating the effectiveness of the proposed algorithm in target tracking tasks.

Funder

Opening Research Fund of National Engineering Laboratory for Test and Experiment Technology of Marine Engineering Equipment

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-mode filter target tracking method for mobile robot using multi-agent reinforcement learning;Engineering Applications of Artificial Intelligence;2024-01

2. Lumped hydrodynamics identification-based cascade control for vertical-plane tracking of a fin-driven autonomous underwater vehicle;Ocean Engineering;2023-10

3. Reinforcement Learning-based Position Control for a Disc-shaped Underwater Remotely Operated Vehicle;2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2023-08-27

4. Environmental Sensing and Motion Control for Underwater Robots;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

5. Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition;Frontiers in Neurorobotics;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3