Numerical Study of Flat Plate Impact on Water Using a Compressible CIP–IBM–Based Model

Author:

Sun Hongyue,Ding Weiye,Zhao Xizeng,Sun Zhaochen

Abstract

Due to the entrapment of compressible air, the process of a flat plate impact on water is complicated, which cannot be reproduced using incompressible simulations. To investigate such a slamming process, an accuracy compressible fluid–structure interaction numerical model has been proposed. The solution of this model is based on the constrained interpolation profile (CIP) method to solve the Navier–Stokes equations for the computation of fluid, and an implicit immersed boundary method (IBM) is used to calculate the fluid–structure interaction. Firstly, the present (CIP–IBM–based) model is validated against the problem of the flow past a stationary cylinder. Then it is implemented to simulate the problem of a rigid flat plate impact on water. The predicated impact pressure is compared with reference experiments and other simulations. The CIP–IBM–based model shows a better performance in dealing with sub-atmospheric pressure and reloading. From the numerical view, it is shown that the oscillation of the slamming pressure is significantly affected by the compression and expansion of the entrapped air cushion, and under the influence of the air cushion, the slamming pressure distribution along the bottom is not constant, which also varies greatly with time.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference54 articles.

1. Experiments on Flat-Bottom Slamming

2. On the Cushioning of Water Impact by Entrapped Air

3. The Impact of a Flat Plate on a Water Surface

4. Investigation of impact of rigid and elastic bodies with water;Chuang,1970

5. Experimental investigation on the reduction of flat-bottom body slamming;Huang;Huazhong Univ. Sci. Technol.,1986

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3