Numerical Model of Constrained Wave Energy Hyperbaric Converter under Full-Scale Sea Wave Conditions

Author:

Brito MoisésORCID,Bernardo FranciscoORCID,Neves Maria G.ORCID,Neves Diogo R. C. B.ORCID,Crespo Alejandro J. C.ORCID,Domínguez José M.ORCID

Abstract

A 2D numerical investigation of the power absorption of a constrained wave energy hyperbaric converter (WEHC) under full-scale sea wave conditions is presented. A fully non-linear numerical model DualSPHysics, based on the coupling of a smoothed particle hydrodynamics (SPH) fluid solver with a multibody dynamics solver, is used to model the interaction between wave and WEHC sub-systems. The numerical model was first validated against experimental data for a similar device, with a good accordance between PTO position and velocity. The model is then employed to study the hydrodynamics of a constrained WEHC considering several sea states, different hydraulic power take-off (PTO) damping and breakwater geometries. It is observed that the capture width ratio (CWR) is particularly sensitive to variations in the PTO damping, although the CWR absolute maximum is less sensitive considering mild variations applied to the PTO damping. Both wave height and wave period have an important effect on the CWR. The breakwater geometry is also essential for the performance of the WEHC, with a decrease in maximum CWR of about 15% for porous breakwater. These results are necessary to understand the full-scale behaviour of WEHC.

Funder

Fundação para a Ciência e Tecnologia

Xunta de Galicia

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3