Bending Resistance and Failure Type Evaluation of Basalt Fiber RPC Beam Affected by Notch and Interfacial Damage Using Acoustic Emission

Author:

Liu Hanbing,Lyu Xiang,Zhang Yuwei,Luo GuobaoORCID,Li Wenjun

Abstract

Generally, reactive powder concrete (RPC) contains steel fibers often exposed to aggressive environments. Steel fibers in such RPCs are subjected to corrosion in-service, which can significantly change the mechanical properties of the structural components. In this paper, basalt fibers were used to replace steel fibers for preparing a new basalt fiber modified reactive powder concrete (BFRPC). The bending resistance of BFRPC beams was studied, and the crack propagation and failure type of BFRPC beam were monitored by acoustic emission (AE). During the bending test, the failure type of BFRPC was evaluated by AE. Besides, the effects of notch and interfacial damage on the bending resistance and failure type were also studied. During the test, ordinary Reactive Powder Concrete (RPC) without basalt fibers was used as a reference. Results revealed that failure type of the RPC beam and BFRPC beam was mainly caused by shear failure. The notch increased the number of tensile cracks in the beam failure crack, resulting in a decrease in the bending resistance of RPC beam and BFRPC beam. Besides, basalt fiber could improve the toughness and bending resistance of BFRPC beam and increase resistance of the BFRPC beam to notch and interface damage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Composition of reactive powder concretes

2. Material property characterization of ultra-high performance;Graybeal,2006

3. Reactive powder concretes with high ductility and 200–800mpa compressive strength;Richard;ACI Spec. Publ.,1994

4. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way;Wille;ACI Mater. J.,2011

5. Cements of yesterday and today

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3