A Comprehensive Review of Acoustic Methods for Locating Underground Pipelines

Author:

Liu YingORCID,Habibi DaryoushORCID,Chai Douglas,Wang Xiuming,Chen Hao,Gao Yan,Li Shuaiyong

Abstract

Underground pipelines are vital means of transporting fluid resources like water, oil and gas. The process of locating buried pipelines of interest is an essential prerequisite for pipeline maintenance and repair. Acoustic pipe localization methods, as effective trenchless detection techniques, have been implemented in locating underground utilities and shown to be very promising in plastic pipeline localization. This paper presents a comprehensive review of current acoustic methods and recent advances in the localization of buried pipelines. Investigations are conducted from multiple perspectives including the wave propagation mechanism in buried pipe systems, the principles behind each method along with advantages and limitations, representative acoustic locators in commercial markets, the condition of buried pipes, as well as selection of preferred methods for locating pipelines based on the applicability of existing localization techniques. In addition, the key features of each method are summarized and suggestions for future work are proposed. Acoustic methods for locating underground pipelines have proven to be useful and effective supplements to existing localization techniques. It has been highlighted that the ability of acoustic methods to locate non-metallic objects should be of particular practical value. While this paper focuses on a specific application associated with pipeline localization, many acoustic methods are feasible across a wide range of underground infrastructures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference151 articles.

1. Pipeline Transporthttps://en.wikipedia.org/wiki/Pipeline_transport#cite_note-cia-1

2. Metal detectors in civil engineering and humanitarian de-mining: overview and tests of a commercial visualising system;Bruschini;Insight,2000

3. Effects of soil electromagnetic properties on metal detectors

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3