Abstract
In this study, a tunable graphene plasmonic filter and a two-channel demultiplexer are proposed, simulated, and analyzed in the mid-infrared (MIR) region. We discuss the optical transmission spectra of the proposed cross-shaped resonator and the two-channel demultiplexer. The transmission spectra of the proposed MIR resonator are tunable by change of its dimensional parameters and the Fermi energy of the graphene. Our proposed structures have a single mode in the wavelength range of 5–12 µm. The minimum full width at half maximum (FWHM) and the maximum transmission ratio of the proposed resonator respectively reached 220 nm and 55%. Simulations are performed by use of three-dimensional finite-difference time-domain (3D-FDTD) method. Coupled mode theory (CMT) is used to investigate the structure theoretically. The numerical and the theoretical results are in good agreement. The performance of the proposed two-channel demultiplexer is investigated based on its crosstalk. The minimum value of crosstalk reaches −48.30 dB. Our proposed structures are capable of providing sub-wavelength confinement of light waves, useful in applications in MIR region.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献